

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-10/0012 of 15 February 2016

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

This version replaces

Deutsches Institut für Bautechnik

fischer injection system FIS EM

Bonded anchor for use in concrete

fischerwerke GmbH & Co. KG Otto-Hahn-Straße 15 79211 Denzlingen DEUTSCHLAND

fischerwerke

32 pages including 3 annexes

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 5: "Bonded anchors", April 2013,

used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

ETA-10/0012 issued on 19 March 2015

European Technical Assessment ETA-10/0012

Page 2 of 32 | 15 February 2016

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z97125.15 8.06.01-269/15

European Technical Assessment ETA-10/0012

Page 3 of 32 | 15 February 2016

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The fischer injection system FIS EM is a bonded anchor consisting of a cartridge with injection mortar fischer FIS EM and a steel element according to Annex A2.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance			
Characteristic values under static and quasi-static action for design according to TR 029 or CEN/TS 1992-4:2009, Displacements	See Annex C 1 to C 10			
Characteristic values for seismic performance categories C1 and C2 for design according to Technical Report TR 045, Displacements	See Annex C 11 to C 14			

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

Z97125.15 8.06.01-269/15

European Technical Assessment ETA-10/0012

Page 4 of 32 | 15 February 2016

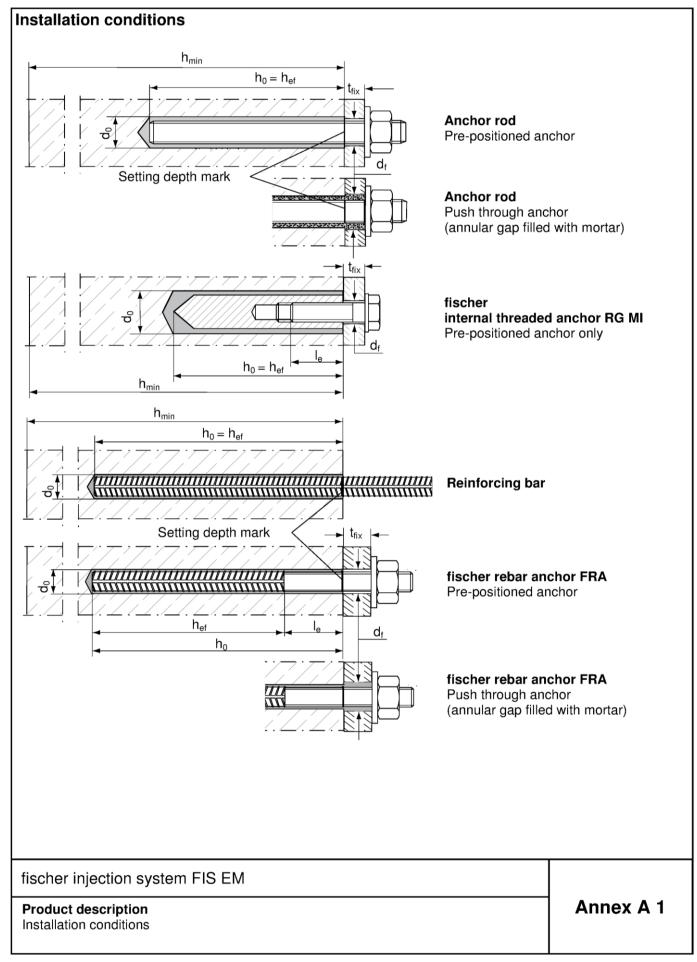
English translation prepared by DIBt

Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

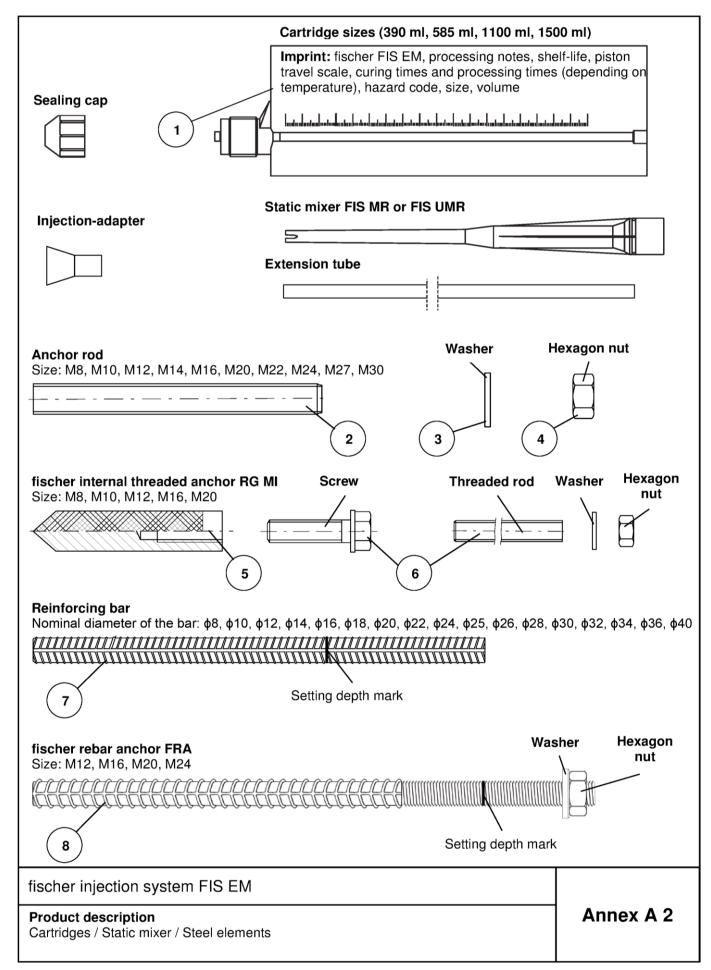
In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 15 February 2016 by Deutsches Institut für Bautechnik


Andreas Kummerow beglaubigt:
p.p. Head of Department Lange

Z97125.15 8.06.01-269/15

Table	e A1: Materials							
Part	Designation		Mat	erial				
1	Mortar cartridge		Mortar, ha	rdener, filler				
	Steel grade	Steel, zinc plated	I	ss steel \4	High corrosion resistant steel C			
2	Anchor rod	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated $\geq 5 \mu m$, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004 $f_{uk} \leq 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation ¹⁾	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4401; 1.4404; 1.4578; 1.4571; 1.4439; 1.4362; 1.4062, 1.4662, 1.4462 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation 1)		Property class 50 or 80 EN ISO 3506-1:2009 or property class 70 with f_{yk} = 560 N/mm ² 1.4565; 1.4529 EN 10088-1:2014 $f_{uk} \le 1000 \text{ N/mm}^2$ $A_5 > 12 \%$ fracture elongation ¹⁾			
3	Washer ISO 7089:2000	zinc plated ≥ 5 µm, EN ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	1.4565;1.4529 EN 10088-1:2014					
4	Hexagon nut	Property class 5 or 8; EN ISO 898-2:2012 zinc plated ≥ 5 μm, ISO 4042:1999 A2K or hot-dip galvanised EN ISO 10684:2004	50, 70 EN ISO 39 1.4401; 1.4 1.4571; 1.4	ty class 0 or 80 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Property class 50, 70 or 80 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
5	fischer internal threaded anchor RG MI	Property class 5.8 ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 39 1.4401; 1.4 1.4571; 1.4	rty class 70 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
6	Screw or anchor / threaded rod for fischer internal threaded anchor RG MI	Property class 5.8 or 8.8; EN ISO 898-1:2013 zinc plated ≥ 5 μm, ISO 4042:1999 A2K	EN ISO 35 1.4401; 1.4 1.4571; 1.4	ty class 70 506-1:2009 404; 1.4578; 439; 1.4362 38-1:2014	Property class 70 EN ISO 3506-1:2009 1.4565; 1.4529 EN 10088-1:2014			
7	Reinforcing bar EN 1992-1-1:2004 and AC:2010, Annex C	Bars and de-coiled rods, class f_{yk} and k according to NDP $f_{uk} = f_{tk} = k \cdot f_{yk}$			+AC:2010			
8	fischer rebar anchor FRA	Rebar part: Bars and de-coiled rods cla with f_{yk} and k according to N of EN 1992-1-1:2004+AC:2 $f_{uk} = f_{tk} = k \cdot f_{yk}$:: 570 or 80 1:2009 9, 1.4401, 1.4404, 1.4571, 9, 1.4362, 1.4062 014					
in	¹⁾ For applications without requirements for seismic performance category C2 the fracture elongation may be in the range of $A_5 > 8$ % in accordance with TR029 Section 5.2.3.2 (Reductions for seismic performance category C1 must be noted)							
	ner injection system F luct description rials	Annex A 3						

Specifications of intended use (part 1) **Table B1:** Overview use and performance categories Anchorages subject to FIS EM with ... Anchor rod fischer Reinforcing bar fischer internal threaded rebar anchor anchor RG MI **FRA** Hammer drilling with standard all sizes drill bit Hammer drilling with hollow drill bit (Heller Nominal drill bit diameter (d₀) 12 mm to 35 mm "Duster Expert" or Hilti "TE-CD, TE-YD") Diamond drilling all sizes uncracked Tables: Tables: Tables: Tables: concrete Static and quasi C1, C5, C2, C5, C3, C5, C4, C5, all sizes all sizes all sizes all sizes static load, in cracked C6, C10 C7, C11 C8, C12 C9, C13 concrete M10 Tables: φ10 Tables: Seismic C1 C15, to C14, to performance C16, C17 C16, C18 M30 ф32 category (only hammer drilling M12, Tables: with Standard / M16, C14, C2 hollow drill bits) M20, C16, C19 M24 dry or wet all sizes concrete Use category flooded hole all sizes Installation +5 °C to +40 °C temperature Temperature (max. long term temperature +35 °C and -40 °C to +60 °C max. short term temperature +60 °C) range I In-service temperature Temperature (max. long term temperature +50 °C and -40 °C to +72 °C max. short term temperature +72 °C) range II fischer injection system FIS EM Annex B 1 Intended Use Specifications (part 1)

Specifications of intended use (part 2)

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013
- Strength classes C20/25 to C50/60 according to EN 206:2013

Use conditions (Environmental conditions):

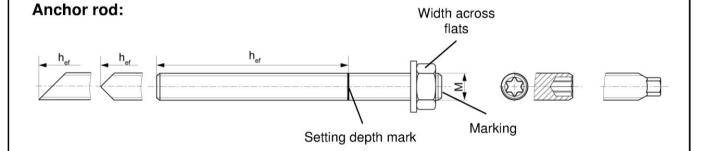
- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel)
- Structures subject to external atmospheric exposure, to permanently damp internal conditions or in other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)

Design:

- Anchorages have to be designed by a responsible engineer with experience of concrete anchor design
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static actions are designed in accordance with EOTA Technical Report TR 029 "Design of bonded anchors" Edition September 2010 or CEN/TS 1992-4:2009
- · Anchorages under seismic actions (cracked concrete) have to be designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
 - Fastenings in stand-off installation or with a grout layer are not allowed

Installation:


- Anchor installation is to be carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- · In case of aborted hole: The hole shall be filled with mortar
- Anchorage depth should be marked and adhered to on installation
- · Overhead installation is allowed

fischer injection system FIS EM	
Intended Use Specifications (part 2)	Annex B 2

8													
Table B2: Installa	ition paran	neters	for and	chor r	ods								
Size				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Width across flats		SW		13	17	19	22	24	30	32	36	41	46
Nominal drill bit diameter		d ₀		12	14	14	16	18	24	25	28	30	35
Drill hole depth		h ₀			**	V:		h ₀ =	h _{ef}				
Effective		$h_{\text{ef},\text{min}}$		60	60	70	75	80	90	93	96	108	120
anchorage depth	,	$h_{\text{ef,max}}$		160	200	240	280	320	400	440	480	540	600
Minimum spacing and minimum edge distance		S _{min} = C _{min}	[mm]	40	45	55	60	65	85	95	105	120	140
Diameter of clearance hole in	pre- positioned anchorage	d _f		9	12	14	16	18	22	24	26	30	33
the fixture ¹⁾	push through anchorage	d _f		14	16	16	18	20	26	28	30	33	40
Minimum thickness of concrete member		h _{min}		ı	h _{ef} + 30 (≥ 100) h _{ef} + 2				n _{ef} + 2d	l _o			
Maximum installation torque		T _{inst,max}	[Nm]	10	20	40	50	60	120	135	150	200	300

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

Marking (on random place) fischer anchor rod:

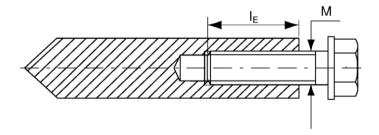
Property class 8.8, stainless steel, property class 80 or high corrosion resistant steel, property class 80: • Stainless steel A4, property class 50 and high corrosion resistant steel, property class 50: • • Or colour coding according to DIN 976-1

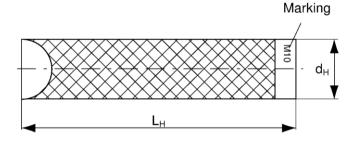
Commercial standard threaded rods, washers and hexagon nuts may also be used if the following requirements are fulfilled:

- Materials, dimensions and mechanical properties according Annex A 3, Table A1
- Inspection certificate 3.1 according to EN 10204:2004, the documents have to be stored
- Setting depth is marked

fischer injection system FIS EM	
Intended Use Installation parameters anchor rods	Annex B 3

Maximum installation torque




Size			M8	M10	M12	M16	M20
Diameter of anchor	d _H		12	16	18	22	28
Nominal drill bit diameter	d ₀		14	18	20	24	32
Drill hole depth	h ₀	[
Effective anchorage depth $(h_{ef} = L_H)$	h _{ef}		90	90	125	160	200
Minimum spacing and minimum edge distance	S _{min} = C _{min}	[mm]	55	65	75	95	125
Diameter of clearance hole in the fixture ¹⁾	d _f		9	12	14	18	22
Minimum thickness of concrete member	h _{min}		120	125	165	205	260
Maximum screw-in depth	I _{E,max}	[18	23	26	35	45
Minimum screw-in depth	$I_{E,min}$	[8	10	12	16	20

¹⁾ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

T_{inst,max} [Nm]

fischer internal threaded anchor RG MI

Marking: Anchor size

e.g.: M10

Stainless steel additional A4

40

80

120

e.g.: M10 A4

High corrosion resistant steel

additional C e.g.: M10 C

Retaining bolt or threaded rods (including nut and washer) must comply with the appropriate material and strength class of Annex A 3, Table A1

fischer injection system FIS EM

Intended Use
Installation parameters fischer internal threaded anchors RG MI

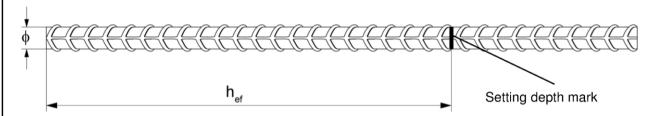
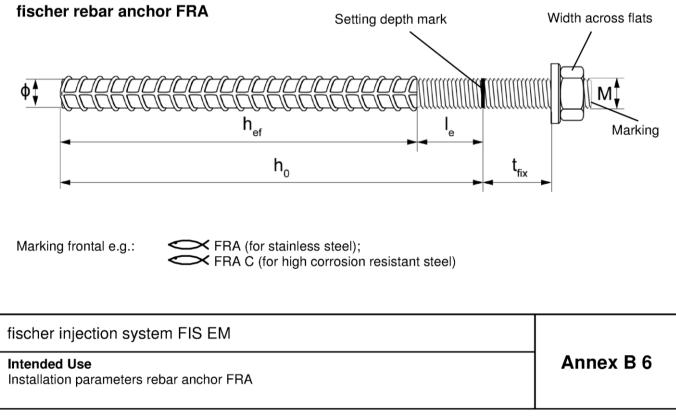

Annex B 4

Table B4: Installation para	meters	s for re	einfo	orci	ing l	oaı	'S							
Nominal diameter of the bar		ф	8	1)	10	1)	12	<u>1</u>)	14	16	18	20	22	24
Nominal drill bit diameter	d ₀		10	12	12	14	14	16	18	20	25	25	30	30
Drill hole depth	h ₀		$h_0 = h_{ef}$											
Effective	$h_{\text{ef,min}}$		6	0	60)	7	0	75	80	85	90	94	98
anchorage depth	h _{ef,max}	[mm]	16	0	20	0	24	10	280	320	360	400	440	480
Minimum spacing and minimum edge distance	S _{min} = C _{min}		4	0	45	5	5	5	60	65	75	85	95	105
Minimum thickness of concrete member	h _{min}			h _{ef} + 30 (≥ 100)			h _{ef} + 2d ₀							
Nominal diameter of the bar		ф	2	5	26	6	2	8	30	32	34	36	40	
Nominal drill bit diameter	d ₀		3	0	35	5	3	5	40	40	40	45	55	
Drill hole depth	h ₀	1	$h_0 = h_{ef}$											
Effective	h _{ef,min}		10	00	10	4	11	2	120	128	136	144	160	
anchorage depth	h _{ef,max}	[mm]	50	00	52	0	56	60	600	640	680	720	800	
Minimum spacing and minimum edge distance	S _{min} = C _{min}	. ,	11	0	12	0	13	30	140	160	170	180	200	
Minimum thickness of concrete member	h_{min}				h _{ef} + 2d ₀									

¹⁾ Both drill bit diameters can be used

Reinforcing bar


- The minimum value of related rib area $f_{R,min}$ must fulfil the requirements of EN 1992-1-1:2004+AC:2010
- The rib height must be within the range: $0.05 \cdot \phi \le h_{rib} \le 0.07 \cdot \phi$ (ϕ = Nominal diameter of the bar , h_{rib} = rib height)

fischer injection system FIS EM	
Intended Use Installation parameters reinforcing bars	Annex B 5

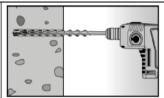
Table B5: Installa	ıtion param	Table B5: Installation parameters for fischer rebar anchor FRA										
Size				M1	2 ¹⁾	M16	M20	M24				
Nominal diameter of the bar		ф		1:	2	16	20	25				
Width across flats		SW		19	9	24	30	36				
Nominal drill bit diameter		d_0		14	16	20	25	30				
Drill hole depth		h ₀				h _{ef}	+ l _e					
Effective	_	$h_{\text{ef},\text{min}}$		7	0	80	90	96				
anchorage depth		$h_{\text{ef},\text{max}}$		14	10	220	300	380				
Distance concrete surface to welded join		l _e	[mm]	mml		100						
Minimum spacing and minimum edge distance		S _{min} = C _{min}		5:	5	65	85	105				
Diameter of clearance hole in	pre- positioned anchorage	≤ d _f		1-	4	18	22	26				
the fixture ²⁾	push through anchorage	≤ d _f		18		22	26	32				
Minimum thickness of concrete member		h _{min}		h ₀ + 30 (≥ 100)		h ₀ + 2d ₀						
Maximum installation torque		T _{inst,max}	[Nm]	4	0	60	120	150				

 $^{^{1)}}$ Both drill bit diameters can be used $^{2)}$ For larger clearance holes in the fixture see TR 029, 4.2.2.1 or CEN/TS 1992-4-1:2009, 5.2.3.1

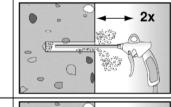
Table B6: Parameters of steel brush FIS BS Ø																
Drill bit diameter	do	[mm]	12	14	16	18	20	24	25	28	30	32	35	40	45	55
Steel brush diameter	d _b	[mm]	14	16	20		25	26	27	30		40		42	47	58

Table B7: Maximum processing time of the mortar and minimum curing time (During the curing time of the mortar the concrete temperature may not fall below the listed minimum temperature)

System temperature	Maximum processing time	Minimum curing time ¹⁾
[°C]	t _{work} [minutes]	t _{cure} [hours]
+5 to +10	120	40
≥ +10 to +20	30	18
≥ +20 to +30	14	10
≥ +30 to +40	7	5


¹⁾ In wet concrete or flooded holes the curing times must be doubled

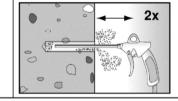
fischer injection system FIS EM	
Intended Use Cleaning tools Processing times and curing times	Annex B 7



Installation instructions part 1

Drilling and cleaning the hole (hammer drilling with standard drill bit)

Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3, B4, B5



Blow out the drill hole twice, with oil-free compressed air ($p \ge 6$ bar)

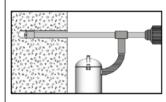
3 2x

Brush the drill hole twice. For drill hole diameter ≥ 30 mm use a power drill. For deep holes use an extension. Corresponding brushes see **Table B6**

Blow out the drill hole twice, with oil-free compressed air ($p \ge 6$ bar)

Go to step 6

2


4

2

Drilling and cleaning the hole (hammer drilling with hollow drill bit)

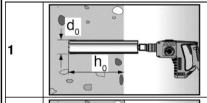
Check a suitable hollow drill (see **Table B1**) for correct operation of the dust extraction

Use a suitable dust extraction system, e.g. Bosch GAS 35 M AFC or a comparable dust extraction system with equivalent performance data

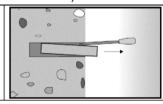
Drill the hole with hollow drill bit. The dust extraction system has to extract the drill dust nonstop during the drilling process. Diameter of drill hole d_0 and drill hole depth h_0 see **Tables B2**, **B3**, **B4**, **B5**

Go to step 6

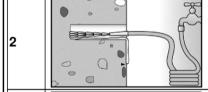
fischer injection system FIS EM

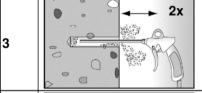

Intended use
Installation instructions part 1

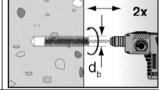
Annex B 8

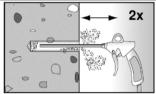


Installation instructions part 2


Drilling and cleaning the hole (wet drilling with diamond drill bit)


Drill the hole. Drill hole diameter \mathbf{d}_0 and drill hole depth \mathbf{h}_0 see Tables B2, B3, B4, B5


Break the drill core and draw it out


Flush the drill hole with clean water until it flows clear

Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

Brush the drill hole twice using a power drill. Corresponding brushes see **Table B6**

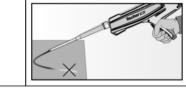


Blow out the drill hole twice, using oil-free compressed air (p > 6 bar)

Preparing the cartridge

4

5


Remove the sealing cap

Screw on the static mixer (the spiral in the static mixer must be clearly visible)

Place the cartridge into the dispenser

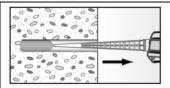
Extrude approximately 10 cm of material out until the resin is evenly grey in colour. Do not use mortar that is not uniformly grey

fischer injection system FIS EM

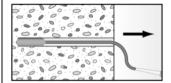
Intended use

Installation instructions part 2

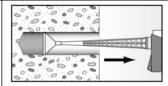
Annex B 9


Z24675.16

8

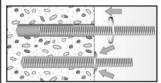


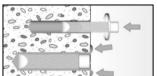
Installation instructions part 3


Injection of the mortar

Fill approximately 2/3 of the drill hole with mortar. Always begin from the bottom of the hole and avoid bubbles

For drill hole depth ≥ 150 mm use an extension tube

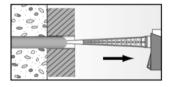



For overhead installation, deep holes $h_0 > 250$ mm or drill hole diameter $d_0 \ge 40$ mm use an injection-adapter

Installation of anchor rods or fischer internal threaded anchors RG MI

10

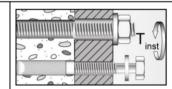
9



Only use clean and oil-free anchor elements. Mark the setting depth of the anchor. Press the threaded rod or fischer internal threaded RG MI anchor down to the bottom of the hole, turning it slightly while doing so.

After inserting the anchor element, excess mortar must be emerged around the anchor element

For overhead installations support the anchor rod with wedges. (e.g. fischer centering wedges)


For push through installation fill the annular gap with mortar

11

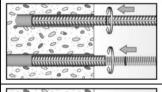
Wait for the specified curing time t_{cure} see **Table B7**

12

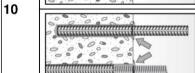
Mounting the fixture T_{inst,max} see **Tables B2 and B3**

fischer injection system FIS EM

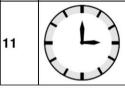
Intended use

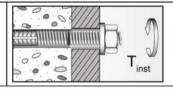

Installation instructions part 3

Annex B 10



Installation instructions part 4


Installation reinforcing bars and fischer rebar anchor FRA


Only use clean and oil-free reinforcing bars or fischer FRA. Mark the setting depth. Turn while using force to push the reinforcement bar or the fischer FRA into the filled hole up to the setting depth mark

When the setting depth mark is reached, excess mortar must be emerged from the mouth of the drill hole

Wait for the specified curing time t_{cure} see Table B7

Mounting the fixture $T_{\text{inst,max}}$ see **Table B5**

fischer injection system FIS EM

Intended use

Installation instructions part 4

Annex B 11

Size					М8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearii	ng capacity unde	r tensile loa	ad, ste	el fail	ure									
gr s	Steel zinc plated		5.8		19	29	43	58	79	123	152	177	230	281
earing N _{RK,s}			8.8		29	47	68	92	126	196	243	282	368	449
ct.be	Stainless steel	Property class	50	[kN]	19	29	43	58	79	123	152	177	230	281
Charact.bearing capacity N _{Rk,s}	A4 and High corrosion	Oldoo	70		26	41	59	81	110	172	212	247	322	393
5 0	resistant steel C		80		30	47	68	92	126	196	243	282	368	449
Partia	I safety factors ¹⁾													
	Steel zinc plated		5.8							50				
safety 'Y _{Ms,N}			8.8							50				
'artial safet factor ‱ _N	Stainless steel A4 and	Property class	50	[-]						86				
Partial factor	1 11911 0011 001011		70						1,50 ²⁾	/ 1,87				
	resistant steel C		80						1,	60				
	ng capacity unde	r shear load	d, stee	l failu	re									
witho	ut lever arm		F 0		9	15	21	29	39	61	76	89	115	141
aring ^{RK,s}	Steel zinc plated		5.8 8.8		15	23	34	46	63	98	122	141	184	225
bea y V _F	Stainless steel	Property	50	fl. N 17	9	15	21	29	39	61	76	89	115	141
Charact.bearing capacity V _{Rk,s}	A4 and	class	70	[kN]	13	20	30	40	55	86	107	124	161	197
	High corrosion resistant steel C		80		15	23	34	46	63	98	122	141	184	225
with l	ever arm		- 00		-10		0+	40		50	122	171	104	
			5.8		19	37	65	104	166	324	447	560	833	1123
bending t M ⁰ Rk,s	Steel zinc plated		8.8		30	60	105	167	266	519	716	896	1333	1797
	Stainless steel	Property	50	[Nm]	19	37	65	104	166	324	447	560	833	1123
Charact. moment	A4 and	class	70	ונייייין	26	52	92	146	232	454	626	784	1167	1573
Cha	High corrosion resistant steel C		80		30	60	105	167	266	519	716	896	1333	
Partia	Il safety factors ¹⁾		- 00		- 50	_ 00	100	107	200	313	710	030	1000	1737
			5.8						1,	25				
ety s,v	Steel zinc plated		8.8							25				
l safety 'r ‱,∨	Stainless steel	Property	50	[-]					2,	38				
Partial s factor	A4 and	class	70	'					1,25 ²⁾	/ 1,56				
g. +	High corrosion resistant steel C		80	1,33										
	absence of other n lly admissible for s				and A	₅ > 12 °	% (e.g.	fische	r anch	or rods	s)			

Z24675.16 8.06.01-269/15

Characteristic steel bearing capacity of fischer anchor rods and

standard threaded rods

Size					М8	M10	M12	M16	M20
Bearing capacity	/ unde	r tensile lo	ad, ste	el fail	ure				
		Property	5.8		19	29	43	79	123
Characteristic	N	class	8.8	[kN]	29	47	68	108	179
bearing capacity with screw	$N_{Rk,s}$	Property	A4	[KIN]	26	41	59	110	172
		class 70	O		26	41	59	110	172
Partial safety fac	ctors ¹⁾								
		Property	5.8				1,50		
Partial safety	.,	class	8.8	[-]			1,50		
actor YMs,	$\gamma_{Ms,N}$	Property	A4	[-]			1,87		
		class 70	С				1,87		
Bearing capacity	/ unde	r shear loa	d, stee	l failu	re				
without lever arr	n								
Observa et a viatia		Property	5.8		9,2	14,5	21,1	39,2	62,0
Characteristic bearing capacity	V	class	8.8	[kN]	14,6	23,2	33,7	54,0	90,0
with screw	▼ Rk,s	Property	_A4	[KIV]	12,8	20,3	29,5	54,8	86,0
		class 70	С		12,8	20,3	29,5	54,8	86,0
with lever arm									
Observatoristic		Property	5.8		20	39	68	173	337
Characteristic bending moment	M ⁰	class	8.8	[Nm]	30	60	105	266	519
with careur	IVI Rk,s	Property	A4	[[,,,,,,]	26	52	92	232	454

26

26

52

52

92

92

1,25

1,25

1,56

1,56

232

232

Property

class 70

Property

Property class 70

class

Α4

С

5.8

8.8

Α4

[-]

_							
2	⁾ Only	for	steel	failure	without	lever	arm

 $\gamma_{\text{Ms,V}}$

fischer injection system FIS EM

Performances

with screw

Partial safety

factor

Partial safety factors1)

Characteristic steel bearing capacity of fischer internal threaded rods RG MI

Annex C 2

454

454

1,25 / 1,50²⁾

¹⁾ In absence of other national regulations

Table C3: Characteristic values for the steel bearing capacity under tensile / shear load of reinforcing bars												
Nominal diameter of the bar φ 8 10 12 14 16 18 20 22 24 25 26 28 30 32 34	36	40										

Bearing capacity under tensile load, steel failure $A_s \cdot f_{uk}^{-1}$ Characteristic bearing capacity $N_{Rk.s}$

Bearing capacity under shear load, steel failure

without lever arm

with lever arm

 $0,5 \cdot A_s \cdot f_{uk}^{1)}$ $V_{\mathsf{Rk},\mathsf{s}}$ [kN] Characteristic bearing capacity 8,0

Ductility factor acc. to CEN/TS k_2 [-] 1992-4-5:2009 Section 6.3.2.1

M⁰_{Rk,s} $1,2\cdot W_{el}\cdot f_{uk}{}^{1)}$ Characteristic bending moment $^{1)}$ f_{uk} or f_{yk} respectively must be taken from the specifications of the reinforcing bar

Table C4: Characteristic values for the steel bearing capacity under tensile / shear load of fischer rebar anchors FRA

		M12	M16	M20	M24
load, ste	el fail	ure			
$N_{Rk,s}$	[kN]	63	111	173	270
$\gamma_{Ms,N}$	[-]		1	,4	
oad, stee	l failu	re			
$V_{Rk,s}$	[kN]	30	55	86	124
$M^0_{Rk,s}$	[Nm]	92	233	454	785
γMs,V	[-]		1,	,56	
	$N_{Rk,s}$ $\gamma_{Ms,N}$ oad, stee $V_{Rk,s}$ $M^0_{Rk,s}$	$N_{Rk,s}$ [kN] $\gamma_{Ms,N}$ [-] oad, steel failu $V_{Rk,s}$ [kN] $M^0_{Rk,s}$ [Nm]	load, steel failure $N_{Rk,s}$ [kN] 63 $\gamma_{Ms,N}$ [-] oad, steel failure $V_{Rk,s}$ [kN] 30 $M^0_{Rk,s}$ [Nm] 92	load, steel failure $N_{Rk,s}$ [kN] 63 111 $\gamma_{Ms,N}$ [-] 1 1 1 1 1 1 1 1 1	load, steel failure N _{Rk,s} [kN] 63 111 173 γ _{Ms,N} [-] 1,4 oad, steel failure V _{Rk,s} [kN] 30 55 86 M ⁰ _{Rk,s} [Nm] 92 233 454

¹⁾ In absence of other national regulations

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of reinforcing bars and fischer rebar anchors FRA

Edge distance 2,0 > h / l h / Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029	sive stren $C25/30$ $C30/37$ $C35/45$ $C40/50$ $C45/55$ $C50/60$ $h_{ef} \ge 2,0$ $h_{ef} > 1,3$ $h_{ef} \le 1,3$ shear load	k_{ucr} k_{cr} k_{cr} k_{cr} k_{cr} k_{cr} k_{cr} k_{cr} k_{cr} k_{cr}	[-]			220/25	5			1,4 1,4 1,6 1,0 1,0 h _{ef}	0,1 ,2 02 04 06 07 08 09 h _{ef} - 1,8 h	1				
Factors acc. to CEN/TS 1 Uncracked concrete Cracked concrete Factors for the compress Increasing factor for τ _{Rk} Splitting failure h / 2,0 > h / l h /	sive stren $C25/30$ $C30/37$ $C35/45$ $C40/50$ $C45/55$ $C50/60$ $h_{ef} \ge 2,0$ $h_{ef} > 1,3$ $h_{ef} \le 1,3$ shear load	κ_{ucr} κ_{cr}	[-]			220/25	5			7 1,4 1,4 1,6 1,0 h _{ef} 2,20 2 c	02 04 06 07 08 09 h _{ef} - 1,8 h	1				
Cracked concrete Factors for the compress Increasing factor for τ _{Rk} Splitting failure Edge distance	$\begin{array}{c} C25/30 \\ C30/37 \\ C35/45 \\ C40/50 \\ C45/55 \\ C50/60 \\ \\ h_{ef} \geq 2,0 \\ h_{ef} > 1,3 \\ h_{ef} \leq 1,3 \\ \end{array}$	K_{cr} Igth o Ψ_c $C_{cr,sp}$ $S_{cr,sp}$ T_{cr}	f conc	rete	» > C	20/29	5			7 1,4 1,4 1,6 1,0 h _{ef} 2,20 2 c	02 04 06 07 08 09 h _{ef} - 1,8 h	1				
Factors for the compress Increasing factor for τ _{Rk} Splitting failure Edge distance	$\begin{array}{c} C25/30 \\ C30/37 \\ C35/45 \\ C40/50 \\ C45/55 \\ C50/60 \\ \\ h_{ef} \geq 2,0 \\ h_{ef} > 1,3 \\ h_{ef} \leq 1,3 \\ \end{array}$	K_{cr} Igth o Ψ_c $C_{cr,sp}$ $S_{cr,sp}$ T_{cr}	f conc	rete	>> 0	20/25	5			7 1,4 1,4 1,6 1,0 h _{ef} 2,20 2 c	02 04 06 07 08 09 h _{ef} - 1,8 h	1				
Increasing factor for τ_{Rk} Splitting failure Edge distance $\frac{h}{2,0 > h}$ Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ accents acce	$\begin{array}{c} C25/30 \\ C30/37 \\ C35/45 \\ C40/50 \\ C45/55 \\ C50/60 \\ \\ h_{ef} \geq 2,0 \\ h_{ef} > 1,3 \\ h_{ef} \leq 1,3 \\ \end{array}$	Ψ_c $C_{cr,sp}$ $S_{cr,sp}$ J	[-]	rete	>> 0	20/25	5			1,4 1,4 1,4 1,0 1,0 h _{ef} 2,26 2 c	02 04 06 07 08 09 h _{ef} - 1,8 h	1				
Increasing factor for τ_{Rk} Splitting failure Edge distance $\frac{h}{2,0 > h}$ Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ accents acce	$\begin{array}{c} C25/30 \\ C30/37 \\ C35/45 \\ C40/50 \\ C45/55 \\ C50/60 \\ \\ h_{ef} \geq 2,0 \\ h_{ef} > 1,3 \\ h_{ef} \leq 1,3 \\ \end{array}$	Ψ_{c} $c_{cr,sp}$ $s_{cr,sp}$ γ_{2} $=$	[-]							1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	04 06 07 08 09 h _{ef} - 1,8 h	1				
factor for τ_{Rk} Splitting failure Edge distance $\frac{h}{2,0 > h}$ Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h_{ef} (= l_f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	$C35/45$ $C40/50$ $C45/55$ $C50/60$ $h_{ef} \ge 2.0$ $h_{ef} > 1.3$ $h_{ef} \le 1.3$	C _{cr,sp} S _{cr,sp} 3	[mm]							1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	04 06 07 08 09 h _{ef} - 1,8 h	1				
factor for τ_{Rk} Splitting failure Edge distance $\frac{h}{2,0 > h}$ Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h_{ef} (= l_f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods		C _{cr,sp} S _{cr,sp} 3	[mm]							1,0 1,0 h _{ef} 2,20 2 c	07 08 09 h _{ef} - 1,8 h	1				
	$C45/55$ $C50/60$ $h_{ef} \ge 2.0$ $h_{ef} > 1.3$ $h_{ef} \le 1.3$ Shear load	C _{cr,sp} S _{cr,sp} 3	[mm]							1,0 1,0 h _{ef} 2,20 2 c	08 09 h _{ef} - 1,8 h 6 h _{ef}	1				
Splitting failure h / 2,0 > h / h / Spacing Bearing capacity under sections Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of hef (= lf) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	C50/60 $h_{ef} \ge 2.0$ $h_{ef} > 1.3$ $h_{ef} \le 1.3$ Shear load	S _{cr,sp}								1,0 h _{ef} 2,20 2 c	h _{ef} - 1,8 h	1				
Edge distance $\frac{h / 2,0 > h / 1}{2,0 > h / 1}$ Spacing Bearing capacity under sinstallation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	$h_{ef} \ge 2.0$ $h_{ef} > 1.3$ $h_{ef} \le 1.3$ Shear load	S _{cr,sp}								1,0 h _{ef} 2,26 2 c	h _{ef} - 1,8 h 6 h _{ef}	1				
Edge distance $\frac{h / 2,0 > h / 1}{2,0 > h / 1}$ Spacing Bearing capacity under sizes Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	$h_{ef} > 1.3$ $h_{ef} \le 1.3$ shear load	S _{cr,sp}								h _{ef} 2,26 2 c	- 1,8 h	ו				
Edge distance $\frac{h / 2,0 > h / 1}{2,0 > h / 1}$ Spacing Bearing capacity under sinstallation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ accentry 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	$h_{ef} > 1.3$ $h_{ef} \le 1.3$ shear load	S _{cr,sp}								h _{ef} 2,26 2 c	- 1,8 h	1				
Edge distance 2,0 > h / l h / Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ accentry 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	$h_{ef} > 1.3$ $h_{ef} \le 1.3$ shear load	S _{cr,sp}								h _{ef} 2,26 2 c	- 1,8 h	1				
Spacing Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	h _{ef} ≤ 1,3	S _{cr,sp}								2 c	cr,sp					
Bearing capacity under s Installation safety factors All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	shear load	γ ₂ =	[-]													
All installation safety factors Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ accentry 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods		γ ₂ =	[-]													
All installation conditions Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	S	=	[-]							1.	0					
Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ accEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods		=	[-]							1	0					
Concrete pry-out failure Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= I _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods		=	[-]							1.	Λ					
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods		γinst														
Factor k acc. to TR029 Section 5.2.3.3 resp. k ₃ acc CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods																
Section 5.2.3.3 resp. k ₃ at CEN/TS 1992-4-5:2009 Section 6.3.3 Concrete edge failure The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods				I												
The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods	Section 5.2.3.3 resp. k ₃ acc. to CEN/TS 1992-4-5:2009 k ₍₃₎ [-]						2,0									
The value of h _{ef} (= l _f) under shear load Calculation diameters Size fischer anchor rods and standard threaded rods																
Size fischer anchor rods and standard threaded rods			[mm]						mi	n (h	n _{ef} ; 8d)					
fischer anchor rods and standard threaded rods																
standard threaded rods				М	8	M10	M12	M14	4 M	16	M20	M22	M24	M27	МЗ	
fischer		d		8	3	10	12	14	. 1	6	20	22	24	27	30	
internal threaded anchors	RG MI	d	[mm]	12	2	16	18	-	2	22	28	-	-	-	-	
fischer rebar anchors FRA		d		-		-	12	-	1	6	20	-	25	-	-	
Nominal diameter of the ba	ar		ф	8	10	12 1	4 16	18 2	20 2	2 2	4 25	26 28	30 3	32 34	36 4	
Reinforcing bar		d	T	8	10	12 1	4 16	18 2	20 2	2 2	4 25	26 28	30 3	32 34	36 4	
internal threaded anchors fischer rebar anchors FRA Nominal diameter of the ba Reinforcing bar fischer injection syste		d d		1:	2 10	16 - 12 1	18 12 4 16	- 18 2	20 2	6 2 2	28 20 4 25	- 26 28	25 30 3	- 32 34		

							_						
Table C6: Characte threade uncrack	d rods	s in ham	nmer or o	diamo					ods a	nd st a	andar	d	
Size				M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Combined pullout and	d conc	rete cone	failure										
Calculation diameter		d	[mm]	8	10	12	14	16	20	22	24	27	30
Uncracked concrete													
Characteristic bond re	esistan	ice in un	cracked (concre	ete C20	0/25							
Hammer-drilling with st	tandard	drill bit or	r hollow d	rill bit (dry an	d wet o	concre	<u>te)</u>					
Temperature range ¹⁾ –	ı	- τ	[NI/mm ²]	16	16	15	14	14	13	13	13	12	12
					14	14	13	13	12	12	12	11	11
Hammer-drilling with st					ì -	d hole)							
Temperature range ¹⁾ —	<u> </u>	- τ	[N/mm ²]	16	16	15	13	13	11	11	10	10	9
						14	13	12	11	10	10	9	9
Diamond-drilling (dry a	nd wet	concrete	as well as	flood	ed hole	_							
Temperature range ¹⁾ —	<u> </u>	- τ	[N/mm ²]	16	15	13	12	12	10	10	10	9	9
		^L Rk,ucr	[14/11	15	14	12	11	11	10	9	9	8	8
Installation safety fac	tors												
Dry and wet concrete		$-\gamma_2 = \gamma_{inst}$	[-]			1	,0				1,	,2	
Flooded hole		72 - Tinst	[-]					1	,4				
Cracked concrete													
Characteristic bond re	esistan	ice in cra	cked cor	ıcrete	C20/2	5							
Hammer-drilling with st				_	_	_	<u>drilling</u>	(dry a	<u>ind we</u>	t concr	<u>ete)</u>		
Temperature range ¹⁾ —	<u> </u>	— Тры	[N/mm ²]	7	7	7	7	6	6	7	7	7	7
							7	6	6	7	7	7	7
Hammer-drilling with st	<u>tandard</u>	drill bit o	<u>r hollow d</u>	rill bit a	<u>and dia</u>	mond-	<u>drilling</u>	(flood	ed hol	<u>e)</u>			
Temperature range ¹⁾ —	<u> </u>	_ τ _{Disco}	[N/mm ²]	6	7,5	7,5	7	6	6	6	6	6	6
Tomporataro rango		HK,Cr	[[, 4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	6	7	7	7	6	6	6	6	6	6
Installation safety fac	tors												
Dry and wet concrete		$-\gamma_0 = \gamma_{i-1}$	[-]				,0				1,	,2	
Flooded hole		$-\gamma_2 = \gamma_{\text{inst}}$	[[]	1,2									

 $^{^{1)}}$ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

fischer injection system FIS EM

Performances
Characteristic values for static or quasi-static action under tensile load for fischer anchor rods and standard threaded rods (uncracked or cracked concrete)

Annex C 5

ı	Table C7: Characteristic values of resistance for fischer internal threaded anchors
ı	RG MI in hammer or diamond drilled holes; uncracked or cracked concrete

Size			М8	M10	M12	M16	M20
Combined pullout and	l concrete cond	e failure					
Calculation diameter	d	[mm]	12	16	18	22	28
Uncracked concrete							
Characteristic bond re	sistance in un	cracked	concrete C2	0/25			
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill bit (dry an	d wet concre	<u>te)</u>		
Temperature range ¹⁾ —	I _	[N1/mm ²]	15	14	14	13	12
Temperature range * —	Π τ _{Rk,ucr}		14	13	13	12	11
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill bit (floode	d hole)			
Tomporeture range ¹⁾	I _	[NI/mm ²]	14	12	12	11	10
Temperature range ¹⁾ —	Π τ _{Rk,ucr}		13	12	11	10	9
Diamond-drilling (dry ar	nd wet concrete	as well as	s flooded hole	<u>e)</u>			
Temperature range ¹⁾ —	I _	[N/mm ²]	13	12	11	10	9
remperature range * —	Π τ _{Rk,ucr}		12	11	10	9	8
Installation safety fact	tors						
Dry and wet concrete				1,0		1,	2
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]			1,4		
Cracked concrete							
Characteristic bond re	sistance in cra	acked co	ncrete C20/2	5			
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill bit and dia	amond-drilling	(dry and we	t concrete)	
Temperature range ¹⁾ —	I _	[NI/mm ²]	7	6	6	7	7
Temperature range * —	II TRk,cr		7	6	6	7	7
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill bit and dia	amond-drilling	(flooded hol	<u>e)</u>	
Temperature range ¹⁾ —	<u> </u>	[N/mm ²]	7	6,5	6	6	6
Temperature range * —	Π τ _{Rk,cr}	[N/mm ²]	7	6	6	6	6
Installation safety fact	tors						
Dry and wet concrete	.,	[]		1,0		1,	2
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]		1,2		1,	4

 $^{^{1)}}$ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

fischer injection system FIS EM

Performances

Characteristic values for static or quasi-static action under tensile load for fischer internal threaded anchors RG MI (uncracked or cracked concrete)

Table C8: Characte in hamme	ristic values e er or diamone								_			d c	one	cre	te				
Nominal diameter of the	ne bar	ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Combined pullout and	concrete con	e failure																	
Calculation diameter	d	[mm]	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Uncracked concrete																			
Characteristic bond re	sistance in un	cracked	con	cret	e C	20/2	:5												
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill k	oit (d	lry a	ınd v	vet	con	crete	<u>e)</u>									
T 1)	I	[N1/21	16	16	15	14	14	14	13	13	13	13	13	12	12	12	12	12	11
Temperature range ¹⁾ —	Π τ _{Rk,ucr}	[IN/mm ⁻]	15	14	14	13	13	13	12	12	12	12	11	11	11	11	11	11	10
Hammer-drilling with sta	andard drill bit o	r hollow d	rill k	oit (fl	ood	ed h	nole)											
T 1)	1	[N1/21	16	16	14	13	12	12	11	11	10	10	10	10	9	9	9	8	8
Temperature range ¹⁾ —	Π τ _{Rk,ucr}	[[IN/mm ⁻]	15	14	13	12	12	11	11	10	10	9	9	9	9	8	8	8	8
Diamond-drilling (dry ar	nd wet concrete	as well as	s flo	ode	d ho	le)										•			
Temperature range ¹⁾ —	I	[N]/mm mm 21	16	15	13	12	12	11	10	10	10	9	9	9	9	8	8	8	7
Temperature range 7 —	Π τ _{Rk,ucr}	[IN/mm] 1		14	12	11	11	10	10	9	9	9	8	8	8	8	7	7	7
Installation safety fact	ors																	•	
Dry and wet concrete						1,0								1	,2				
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]									1,4								
Cracked concrete																			
Characteristic bond re	sistance in cra	acked co	ncre	ete C	20/	25													
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill k	oit ar	าd d	iam	ond	-dril	ling	(dry	and	d we	et co	ncr	ete)				
Temperature range ¹⁾ —	<u> </u>	[NI/mm ²]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
remperature range	II TRk,cr	[[14/11111]	7	7	7	7	6	6	6	7	7	7	7	7	7	5	5	5	5
Hammer-drilling with sta	andard drill bit o	r hollow d	Irill k	oit ar	nd d	iam	ond	-dril	ling	(flo	odec	d ho	le)						
Temperature range ¹⁾ —	<u> </u>	[NI/mm ²]	6	7,5	6,5	6,5	6,5	6	6	6	6	6	6	6	6	5	5	5	5
remperature range *	II TRk,cr		6	6,5	6,5	6	6	6	6	6	6	6	6	6	6	5	5	5	5
Installation safety fact	ors																		
Dry and wet concrete		r_1				1,0								1	,2				
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]			1,	2								1,4					

7 I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex	В	1
--	---	---

fischer injection system FIS EM Annex C 7 **Performances** Characteristic values for static or quasi-static action under tensile load for reinforcing bars (uncracked or cracked concrete)

	racteristic values of resistance for fischer rebar anchors FRA ammer or diamond drilled holes; uncracked or cracked concrete M12 M16 M20			
Size	M12	M16	M20	

Size			M12	M16	M20	M24
Combined pullout and	d concrete con	e failure				
Calculation diameter	d	[mm]	12	16	20	25
Uncracked concrete						
Characteristic bond re	esistance in un	cracked	concrete C20/2	5		
Hammer-drilling with sta	andard drill bit c	r hollow c	Irill bit (dry and w	vet concrete)		
Tomporatura ranga ¹⁾	1	[NI/mm²]	15	14	13	13
Temperature range ¹⁾ —	Π τ _{Rk,ucr}		14	13	12	12
Hammer-drilling with sta	andard drill bit c	r hollow c	Irill bit (flooded h	ole)		
T1)	ı	[N1/22/22]	14	12	11	10
Temperature range ¹⁾ —	Π τ _{Rk,ucr}	[[IN/mm]]	13	12	11	9
Diamond-drilling (dry ar	nd wet concrete	as well as	s flooded hole)			
Tama ayatı wa yana 1)	1	[N]/maga21	13	12	10	9
Temperature range ¹⁾ —	Π τ _{Rk,ucr}	[N/mm ²]	12	11	10	9
Installation safety fact	tors	•				
Dry and wet concrete				1,0		1,2
Flooded hole	$\gamma_2 = \gamma_{\text{inst}}$	[-]		1,	,4	
Cracked concrete						
Characteristic bond re	esistance in cr	acked co	ncrete C20/25			
Hammer-drilling with sta	andard drill bit c	r hollow c	Irill bit and diamo	ond-drilling (dry a	and wet concrete)
Tamparatura ranga1)	ı	[N/mm ²]	7	6	6	7
Temperature range ¹⁾ —	Π τ _{Rk,cr}		7	6	6	7
Hammer-drilling with sta	andard drill bit c	r hollow c	Irill bit and diamo	nd-drilling (flood	led hole)	
Tamparatura ranga ¹⁾	1	[N]/mm mc 21	7	6	6	6
Temperature range ¹⁾ —	—— τ _{Rk,cr}	[N/mm ²]	7	6	6	6

[-]

1,0

1,2

1,2

1,4

anchors FRA (uncracked or cracked concrete)

 $\gamma_2 = \gamma_{inst}$

Installation safety factors Dry and wet concrete

Flooded hole

fischer injection system FIS EM Annex C 8 **Performances** Characteristic values for static or quasi-static action under tensile load for fischer rebar

 $^{^{1)}}$ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

Table C	:10: Displac	ements	for and	chor ro	ds						
Size		M8	M10	M12	M14	M16	M20	M22	M24	M27	M30
Displace	ment-Factors	for tens	ile load ¹⁾								
Uncrack	ed or cracked	concret	e; Tempe	erature ra	ange I, II						
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,07	0,08	0,09	0,09	0,10	0,11	0,11	0,12	0,12	0,13
$\delta_{N\infty\text{-Factor}}$	[[[[[[[]]]	0,11	0,12	0,13	0,14	0,15	0,16	0,17	0,18	0,19	0,19
Displace	ment-Factors	for shea	r load ²⁾								
Uncrack	ed or cracked	concret	e; Tempe	erature ra	ange I, II						
$\delta_{\text{V0-Factor}}$	[mm/kNI]	0,18	0,15	0,12	0,10	0,09	0,07	0,07	0,06	0,05	0,05
$\delta_{V\infty ext{-Factor}}$	[mm/kN]	0,27	0,22	0,18	0,16	0,14	0,11	0,10	0,09	0,08	0,07

¹⁾ Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V^{\infty}} = \delta_{V^{\infty}\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

Table C11: Displacements for fischer internal threaded anchors RG MI

Size		M8	M10	M12	M16	M20								
Displace	ment-Factors	for tensile load1)												
Uncrack	Uncracked or cracked concrete; Temperature range I, II													
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,09	0,10	0,10	0,11	0,13								
δ _{N∞-Factor}	[[[[[[]]]	0,13	0,15	0,16	0,17	0,19								
Displace	ment-Factors	for shear load ²⁾												
Uncrack	Uncracked or cracked concrete; Temperature range I, II													
$\delta_{\text{V0-Factor}}$	[mm/kN]]	0,12	0,09	0,08	0,07	0,05								
δ _{V∞-Factor}	[mm/kN]	0,18	0,14	0,12	0,10	0,08								

1)	Calculation	of effective	dienlace	mont
٠,	Calculation	OI BUBCIIVE	CHSCHACE	31116111

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V}\infty} = \delta_{\text{V}\infty\text{-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Displacements for anchor rods and fischer internal threaded anchors RG MI

Table C	Table C12: Displacements for reinforcing bars																		
Nominal of the ba	diameter ır	ф	8	10	12	14	16	18	20	22	24	25	26	28	30	32	34	36	40
Displace	ment-Fact	ors	for te	ensile	load	11)													
Uncrack	ed or crack	ked	conc	rete;	Tem	perat	ure r	ange	I, II										
$\delta_{\text{N0-Factor}}$	[2\1	0,07	0,08	0,09	0,09	0,10	0,10	0,11	0,11	0,12	0,12	0,12	0,13	0,13	0,13	0,14	0,14	0,15
$\delta_{N\infty\text{-Factor}}$	[mm/(N/mm²)]	ןני יי	0,11	0,12	0,13	0,14	0,15	0,16	0,16	0,17	0,18	0,18	0,18	0,19	0,19	0,20	0,20	0,21	0,22
Displace	Displacement-Factors for shear load ²⁾																		
Uncrack	Uncracked or cracked concrete; Temperature range I, II																		
$\delta_{\text{V0-Factor}}$	[100 mg /LeN I]	,	0,18	0,15	0,12	0,10	0,09	0,08	0,07	0,07	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04
δ _{V∞-Factor}	[mm/kN]	J	0,27	0,22	0,18	0,16	0,14	0,12	0,11	0,10	0,09	0,09	0,08	0,08	0,07	0,07	0,06	0,06	0,05

1) Calculation of effective displacement:

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}\infty} = \delta_{\text{N}\infty\text{-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{Ed}$: Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{\text{V0}} = \delta_{\text{V0-Factor}} \cdot V_{\text{Ed}}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

 $(V_{Ed}: Design\ value\ of\ the\ applied\ shear\ force)$

Table C13: Displacements for fischer rebar anchors FRA

Size		M12	M16	M20	M24							
Displacement	t-Factors for te	nsile load ¹⁾										
Uncracked or cracked concrete; Temperature range I, II												
$\delta_{\text{N0-Factor}}$	[mm/(N/mm²)]	0,09	0,10	0,11	0,12							
$\delta_{N\infty ext{-Factor}}$	[mm/(N/mm)]	0,13 0,15		0,16	0,18							
Displacement	t-Factors for sl	near load ²⁾										
Uncracked or cracked concrete; Temperature range I, II												
$\delta_{\text{V0-Factor}}$	[mm/kN]	0,12	0,09	0,07	0,06							
$\delta_{V\infty ext{-Factor}}$	[mm/kN]	0,18	0,14	0,11	0,09							

1)	Calculation	Ωf	effective	disn	laceme	nt
,	Calculation	OI.	enective	uisu	iaceille	111

 $\delta_{\text{N0}} = \delta_{\text{N0-Factor}} \cdot \tau_{\text{Ed}}$

 $\delta_{\text{N}^{\infty}} = \delta_{\text{N}^{\infty}\text{-Factor}} \, \cdot \, \tau_{\text{Ed}}$

(τ_{Ed} : Design value of the applied tensile stress)

²⁾ Calculation of effective displacement:

 $\delta_{V0} = \delta_{V0\text{-Factor}} \cdot V_{Ed}$

 $\delta_{V\infty} = \delta_{V\infty\text{-Factor}} \cdot V_{Ed}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Displacements for reinforcing bars and fischer rebar anchors FRA

Table C14: Characteristic values for the steel bearing capacity under tensile / shear load of fischer anchor rods and standard threaded rods under seismic action performance category C1 or C2

	action pend	office c	aleg	ory C	or or	U 2							
Size					M10	M12	M14	M16	M20	M22	M24	M27	M30
Bearing	capacity under te	nsile load, s	steel	failur	e ¹⁾								
fischer a	nchor rods and s	tandard thre	eaded	l rod	s, perf	orman	ce cate	gory C	1				
ور 2	Steel zinc plated		5.8		29	43	58	79	123	152	177	230	281
arir Rk,s,(— Plated		8.8		47	68	92	126	196	243	282	368	449
t.be y N	Stainless steel	Property	50	[kN]	29	43	58	79	123	152	177	230	281
Charact.bearing capacity N _{RK,S,C1}	A4 and High corrosion	class	70		41	59	81	110	172	212	247	322	393
	resistant steel C		80		47	68	92	126	196	243	282	368	449
fischer a	nchor rods and s	tandard thre	eaded	d rod	s, perf	orman	ce cate	gory C	2				
ق 2	Steel zinc plated		5.8			39		72	108		177		
arir Rk,s,(— Plateu		8.8			61		116	173		282		
Charact.bearing capacity N _{RK,S,C2}	Stainless steel	Property class	50	[kN]		39		72	108		177		
narac	A4 and High corrosion	Ciass	70			53		101	152		247		
	resistant steel C		80			61		116	173		282		
	capacity under sh				witho	ut leve	r arm ¹⁾						
fischer a	nchor rods, perfo	rmance cat		/ C1	. –							1	
ing ic1		5.8 8.8			15	21	29	39	61	76	89	115	141
eari Rk,s	,		23	34	46	63	98	122	141	184	225		
ct.be	Stainless steel A4 and		Iclass — [KIN]	[kN]	15	21	29	39	61	76	89	115	141
Charact.bearing capacity V _{RK,S,C1}	High corrosion			20	30	40	55	86	107	124	161	197	
	resistant steel C		80		23	34	46	63	98	122	141	184	225
Standard	l threaded rods, p	performance		gory		4-	0.0		4.5			0.1	
ing 10;	Steel zinc plated		5.8		11	15	20	27	43	53	62	81	99
veari V _{RK,s}	Obsislant start	Property	8.8 50		16 11	24 15	32 20	44 27	69 43	85 53	99 62	129 81	158 99
ity '	Stainless steel A4 and	Property class		[kN]									
Charact.bearing capacity VRK,S,C1	High corrosion		70		14	21	28	39	60	75	87	113	138
	resistant steel C		80		16	24	32	44	69	85	99	129	158
	nchor rods and s	tandard thre		d rod	•			,		ı			
Octain Control		5.8			14		27	43		62			
	Droports	8.8			22		44	69		99			
	Stainless steel A4 and	Property class -	50	[kN]		14		27	43		62		
High corrosion resistant steel C			70			20		39	60		87		
		80			22		44	69		99			

¹⁾ Partial safety factors for performance category C1 or C2 see Table C16, for fischer anchor rods FIS A / RGM the factor for steel ductility is 1,0

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of fischer anchor rods and standard threaded rods under seismic action (performance category C1 or C2)

Table C15: Characteristic values for the **steel bearing capacity** under tensile / shear load of **reinforcing bars (B500B)** under seismic action performance category **C1**

Nominal diameter of the bar φ 10 12 14 16 18 20 22 24 25 26 28 30 32 Bearing capacity under tensile load, steel failure 1)
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1
Characteristic bearing capacity N_{Rk,s,C1} [kN] 44 63 85 111 140 173 209 249 270 292 339 389 443 Bearing capacity under shear load, steel failure without lever arm 1)
Reinforcing bar B500B acc. to DIN 488-2:2009-08, performance category C1
Characteristic bearing capacity V_{Rk,s,C1} [kN] 15 22 30 39 49 61 74 88 95 102 119 137 155

Table C16: Partial safety factors of fischer anchor rods, standard threaded rods and reinforcing bars (B500B)

under seismic action performance category C1 or C2

Size	iize						/ 112	M14	М	16	M20	M	22	M24	M2	7	M30
Nominal	diameter of the b	ar		ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Bearing o	capacity under te	nsile load	l, steel f	failuı	re ¹⁾												
	Steel zinc		5.8								1,50						
lcto	plated		8.8								1,50						
ity fa		Property class	50			2,86											
safet Y _{Ms,N}	resistant steel C		70	[-]						1,5	0 ²⁾ / 1	,87					
artial			80								1,60						
g.	Reinforcing bar		B500B							1,40							
Bearing of	capacity under sh	ear load,	steel fa	ilure	1)												
_	Steel zinc		5.8								1,25						
ıcto	plated		8.8		1,25												
ety fa	Otaliness steel	Property class	50		2,38												
safe Yms,	Dartial safety Stainless steel A4 and High corrosion resistant steel C		70	[-]	1,25 ²⁾ / 1,56												
artial	resistant steel C				1,33												
۵	Reinforcing bar		B500B								1,50						

¹⁾ In absence of other national regulations

fischer injection system FIS EM

Performances

Characteristic steel bearing capacity of reinforcing bars under seismic action (performance category C1); partial safety factors (performance category C1 or C2)

¹⁾ Partial safety factors for performance category C1 see Table C16

²⁾ Only admissible for steel C, with f_{yk} / $f_{uk} \ge 0.8$ and $A_5 > 12$ % (e.g. fischer anchor rods)

Table C17: Characteristic values of resistance for fischer anchor rods and standard
threaded rods in hammer drilled holes under seismic action performance
category C1

category c	•										
Size			M10	M12	M14	M16	M20	M22	M24	M27	M30
Characteristic bond resis	tance, con	nbined p	ullout a	and cor	crete c	one fa	ilure				
Hammer-drilling with star	dard drill	bit or ho	llow dr	ill bit (d	ry and	wet co	ncrete)				
Temperature range ¹⁾ II		[NI/mm2]	7,0	7,0	6,7	6,5	5,7	6,7	6,7	6,7	6,7
I II	TRk,C1	[[14/111111-]	7,0	7,0	6,7	5,7	5,7	6,7	6,7	6,7	6,7
Hammer-drilling with star	dard drill	bit or ho	llow dr	ill bit (f	looded	hole)					
Tomporatura rango ¹⁾		[N/mm²]	7,5	7,5	6,5	5,7	5,7	6,7	5,7	5,7	5,7
Temperature range ¹⁾ — II	TRk,C1	[[14/111111-]	6,8	6,8	6,5	5,7	5,7	5,7	5,7	5,7	5,7
Installation safety factors	·										
Bearing capacity under te	nsile load										
Dry and wet concrete					1,0				1	,2	
Flooded hole	$\gamma_2 = \gamma_{inst}$	[-]		1	,2				1,4		
Bearing capacity under s	hear load										
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]					1,0				
·											

 $^{^{1)}}$ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

Table C18: Characteristic values of resistance for reinforcing bars in hammer drilled holes under seismic action performance category C1

Nominal diameter of the	e bar	ф	10	12	14	16	18	20	22	24	25	26	28	30	32
Characteristic bond resistance, combined pullout and concrete cone failure															
Hammer-drilling with standard drill bit or hollow drill bit (dry and wet concrete)															
Temperature range ¹⁾	<u> </u>	[N/mm²]	7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
	II TRK,C1		7,0	7,0	6,7	5,7	5,7	5,7	6,7	6,7	6,7	6,7	6,7	6,7	4,8
Hammer-drilling with standard drill bit or hollow drill bit (flooded hole)															
Temperature range ¹⁾ II	<u> </u>	[N/mm²]	7,5	7,0	6,5	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7
	II TRK,C1		6,8	6,8	5,8	5,8	5,7	5,7	5,7	5,7	5,7	5,7	5,7	5,7	4,8
Installation safety factors															
Bearing capacity unde	r tensile load														
Dry and wet concrete		[-]	1,0				1,2								
Flooded hole	$\gamma_2 = \gamma_{inst}$			1,2				1,4							
Bearing capacity under shear load															
All installation conditions	$\gamma_2 = \gamma_{inst}$	[-]	1,0												

¹⁾ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

fischer injection system FIS EM

Performances

Characteristic values under seismic action (performance category C1) for fischer anchor rods, standard threaded rods and reinforcing bars

Table C19: Characteristic values of **resistance** for **fischer anchor rods** and **standard threaded rods** in hammer drilled holes under seismic action performance category **C2**

			<u> </u>	1						
Size			M16	M20	M24					
Characteristic bond resistance, combined pullout and concrete cone failure										
dard drill	bit or hol	low drill bit (dry	and wet concr	ete)						
	[N/mm²]	2,2	3,5	1,8	2,4					
Rk,C2		2,2	3,5	1,8	2,4					
dard drill	bit or hol	low drill bit (flo	oded hole)							
— •	[N/mm²]	2,3	3,5	1,8	2,1					
Rk,C2		2,3	3,5	1,8	2,1					
isile load										
			1,2							
$\gamma_2 = \gamma_{\text{inst}}$	[-]	1	,2	1,4						
ear load										
$\gamma_2 = \gamma_{inst}$	[-]	1,0								
ensile loa	$ad^{2)}$									
[//N.I/ma.ma ² \1	0,09	0,10	0,11	0,12					
[mm/	(14/mm)]	0,15	0,17	0,17	0,18					
shear load	d ³⁾									
	// c N 17	0,18	0,10	0,07	0,06					
[m	IIII/KINJ	0,25	0,14	0,11	0,09					
	dard drill $-\tau_{Rk,C2}$ dard drill $-\tau_{Rk,C2}$ $-\tau_{Rk,C2}$ $-\tau_{Rk,C2}$ $-\gamma_2 = \gamma_{inst}$ $-\gamma_3 = \gamma_{inst}$ $-\gamma_4 = \gamma_{inst}$ $-\gamma_5 = \gamma_5 = \gamma_5$ $-\gamma_5 = \gamma_5 = \gamma_5 = \gamma_5 = \gamma_5$ $-\gamma_5 = \gamma_5 = \gamma_5 = \gamma_5 = \gamma_5$ $-\gamma_5 = \gamma_5 $	dard drill bit or hole	dard drill bit or hollow drill bit (dry $-\tau_{Rk,C2}$ $[N/mm^2]$ $2,2$ $2,2$ dard drill bit or hollow drill bit (flow $-\tau_{Rk,C2}$ $[N/mm^2]$ $2,3$ 2	ance, combined pullout and concrete cone failure dard drill bit or hollow drill bit (dry and wet concrete to $\tau_{Rk,C2}$ [N/mm²] $= 2,2$ 3,5 2,2 2,2 3,5 2,2 2,2 3,5 2,2 2,2 3,5 2,2 2,2 3,5 2,2 2,2 3,5 2,2 2,2 3,5 2,2 2,2 2,2 3,5 2,2 2,2 2,2 3,5 2,2 2,2 2,2 3,5 2,2 2,2 2,2 3,5 2,2 2,2 2,2 2,2 3,5 2,2 2,2 2,2 2,2 3,5 2,2 2,2 2,2 2,2 3,5 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

 $^{^{1)}}$ I: 35 °C / 60 °C; II: 50 °C / 72 °C; see Annex B 1

 $\delta_{\text{N,(DLS)}} = \delta_{\text{N,(DLS)-Factor}} \, \cdot \, \tau_{\text{Ed}}$

 $\delta_{\text{N,(ULS)}} = \delta_{\text{N,(ULS)-Factor}} \cdot \tau_{\text{Ed}}$

 $(\tau_{\text{Ed}}\text{:}\ \text{Design value of the applied tensile stress})$

3) Calculation of effective displacement:

 $\delta_{V,(DLS)} = \delta_{V,(DLS)\text{-Factor}} \cdot V_{Ed}$

 $\delta_{\text{V,(ULS)}} = \delta_{\text{V,(ULS)-Factor}} \cdot V_{\text{Ed}}$

(V_{Ed}: Design value of the applied shear force)

fischer injection system FIS EM

Performances

Characteristic values under seismic action (performance category C2) for fischer anchor rods and standard threaded rods

²⁾ Calculation of effective displacement: